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Abstract Luminescence decay functions describe the time dependence of the inten-
sity of radiation emitted by electronically excited species. Decay phasor plots (plots of
the Fourier sine transform vs. the Fourier cosine transform, for one or several angular
frequencies) are being increasingly used in fluorescence, namely in lifetime imaging
microscopy. In this work it is shown that the universal semicircle, locus of all expo-
nential decay functions, can be viewed as the weighted sum of two spiraling phasors,
one corresponding to a truncated exponential and the other to a shifted exponential.
The geometric details of this recomposition are discussed. With area normalization,
the decay functions form a subset in the universe of one-sided probability density
functions, the same being valid for the phasor plots, which are parametric plots of the
respective characteristic functions.

Keywords Luminescence decay · Relaxation function · Characteristic function ·
Fourier transform · Spiral

Mathematics Subject Classification 42A38 · 14H81 · 60E10 · 78A10

1 Introduction

A luminescence decay function, I (t), is the function describing the time dependence of
the intensity of radiation spontaneously emitted at a given wavelength, by a previously
excited sample. Only nonnegative times are considered (t ≥ 0). For convenience, and
without loss of generality, the decay function is usually normalized at t = 0, I (0) = 1
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(initial value normalization) [1,2]. A second normalization procedure (area normal-
ization) is to consider instead the function

E(t) = I (t)
∫ ∞

0 I (t)dt
. (1)

In this case, E(t) can be called a density [3], as it has the properties of a probability
density function (pdf). This definition has the advantage of including “decay” functions
that start from zero, as occurs with the emission of intermediates and products of
photochemical processes. The function E(t) also has the meaning of the emission
probability of a photon between t and t + dt , given that the photon was emitted.

The cosine and sine Fourier transforms of E(t), G(ω) and S(ω), respectively, are
defined by [1,4]

G (ω) =
∫ ∞

0
cos(ωu)E (u) du, (2)

S (ω) =
∫ ∞

0
sin(ωu)E (u) du, (3)

where ω is the angular frequency. Following Weber [5], the letter G is used instead
of C (G is a convenient choice, as it avoids the concentration symbol while retaining
graphic similarity with C).

Each decay function, for a given frequency, is mapped onto a point inside the unit
circle defined by G2 + S2 = 1 [3,6], which may be said to be the phasor space,
see Fig. 1. Indeed, Eqs. (2) and (3) immediately imply that both |G| and |S| cannot
exceed 1. It also follows from these equations that G(0) = 1 and S(0) = 0, while
S(∞) = G(∞) = 0, see Fig. 1.

For a given frequency, the (G, S) pair defines a point or, equivalently, a vector
P = Ge1 + Se2, called the phase vector or phasor. This vector is the basis of
the phasor approach to time-resolved luminescence (mainly fluorescence) [1,4,7–
26], which provides a simple graphical and model-independent portrait of a system.
Besides luminophore identification (“fingerprinting”) in complex systems, processes
such as quenching, solvent relaxation and energy transfer are defined by charac-
teristic trajectories in the plane (at a fixed frequency or using several frequencies).
Owing to the limited computational requirements, linearity and robustness, the phasor
approach is especially useful in fluorescence lifetime imaging microscopy (FLIM)
[11–14,18,21,22,25]. Application to measurements in solution (“single pixel data”)
is nevertheless also of interest [9,10,19,20,23].

The precise location of the decay in the plane, defined by its phasor, is a function
of frequency and decay characteristics. Single exponential decays lie on a so-called
universal circle (in fact a semicircle, for nonnegative frequencies), defined by S =√

G(1 − G), with 1 ≥ G ≥ 0 [1,4,7,12–14,19], see Fig. 1. Indeed, if

E(t) = 1

τ
exp

(

− t

τ

)

, (4)

then Eqs. (2) and (3) give, as is well-known,
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Fig. 1 The phasor space (white area) and the universal semicircle. Also shown are the (truly) universal
points corresponding to all decay functions for zero and infinite frequencies. The universal semicircle,
located in the first quadrant, defines the loci of all exponential decays. Other decay functions follow different
paths between the two extreme points (ω = 0 and ω = ∞), when going from zero to infinite frequency

G (ω) = 1

1 + (ωτ)2 , (5)

S (ω) = ωτ

1 + (ωτ)2 . (6)

Complex decays usually, but not always, fall inside the universal circle. The point cor-
responding to a multiexponential decay is located at an average distance from those
of the components. In the case of a two-exponential decay with positive amplitudes,
for instance, the corresponding point falls on a straight line connecting the phasors of
the two components (“tie line”) [1,4,7,19]. Analogously to the lever rule of thermo-
dynamic phase diagrams, the fractional contribution of each of the two components
to the total intensity is given by the length of the segment connecting the decay point
(“average lifetime”) to the opposite component, divided by the length of the full seg-
ment uniting the two extreme points (components) [1,4,12–14,18]. The lever rule was
recently generalized to include cases where one of the amplitudes is negative [26].
When there are three or more components, again with positive amplitudes, the corre-
sponding points define a polygon, with vertices located at or inside the circle, with the
decay point lying in turn inside the polygon [1,4,11–13,18]. If some amplitudes are
negative, the situation is different [26].

When the measurement technique used is frequency domain fluorimetry, based on
sinusoidally modulated excitation, G and S are directly related to the two parameters
obtained for each frequency, which are the modulation ratio, M , and the phase shift,
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�, by G = M cos � and by S = M sin �, hence tan � = S/G and M = |P| =√
G2 + S2 [5]. When the measurement technique used is time domain fluorimetry,

the phasor must be computed (numerically or analytically) from the measured decay
according to Eqs. (2) and (3), at a conveniently chosen frequency (or set of frequencies).
The decay is usually previously fitted with an empirical decay law, e.g. a sum of
exponentials. An alternative procedure is discussed in Sect. 2.1.

As follows from Eqs. (2) and (3), G(ω) and S(ω) are not independent. They are
explicitly related by Hilbert transforms [3],

G(ω) = − 2

π

∞∫

0

uS(u)

ω2 − u2 du, (7)

S(ω) = 2ω

π

∞∫

0

G(u)

ω2 − u2 du. (8)

It might thus seem that a 2D plot would be redundant, as all information is already
contained in G(ω). This nevertheless ignores the fact that a graphical representation
that allows distinguishing between different decay types at a glance has intrinsic value,
and also that in many cases experimental data is restricted to a few frequencies.

The purpose of the present work is to present a probabilistic view of the lumines-
cence phasor approach and also to discuss the characteristic curve of the exponential
luminescence decay function, the so-called universal circle, in terms of two compo-
nents, which have more complex phasor plots.

2 Results and discussion

2.1 Probabilistic aspects

The functions G(ω) and S(ω) are the real and imaginary parts of the conjugate Fourier
transform F∗(ω) of the decay function E(t),

F∗(ω) =
∞∫

0

E(t)eiωt dt = G(ω) + i S(ω), (9)

which is known in probability theory as the characteristic function (cf) of a given
distribution, ϕ(ω) [6,27]. The phasor plot corresponding to the decay function E(t),
which is a pdf, can thus be viewed as a parametric plot of the respective characteristic
function. When the pdf is symmetric, S(ω) = 0 and the characteristic function is real
[6]. A few complex characteristic functions of asymmetric distributions are given in
[6] and in [27]. In the luminescence phasor context all pdfs are one-sided, hence the
cf is generally complex. In the exponential case,
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ϕ(ω) = 1

1 − iωτ
. (10)

A further probabilistic aspect of the phasor plot approach exists in the case of lumines-
cence data obtained by the single photon timing method [1]. In this case the lumines-
cence decay is acquired as a histogram of photon counts, distributed by several narrow
time intervals (channels). Neglecting for the sake of simplicity the convolution of the
intrinsic decay with the instrument response function [1], assumed to be very short
when compared to the characteristic decay times, the decay function is approximated
by

E(t) =
∑

n

fnδ(t − tn), (11)

where

fn = Nn∑

n
Nn

, (12)

Nn being the number of counts in the nth channel, corresponding to time tn . The phasor
plot can be obtained directly from the histogram. As the cf of δ(t − tn) is exp(iω tn),
one has the approximate relations (which are but discrete Fourier transforms):

G(ω) =
∑

n

fn cos (ωtn) , (13)

S(ω) =
∑

n

fn sin (ωtn) . (14)

During the histogram acquisition period, the phasor curve will also evolve stochas-
tically, converging to the final, stable form that corresponds to a large number of
counts.

2.2 Universal semicircle as the sum of two spiraling curves

The simple phasor plot of exponential decays (universal circle, Fig. 1) can be expressed
in terms of two other phasor curves, far more complex geometrically and bearing
some similarities with previously discussed curves [26]. Indeed, the exponential can
be broken into two parts, by splitting it at θ = θ0 into the functions

IL(θ) = [1 − H(θ − θ0)] e−θ , (15)

IR(θ) = H(θ − θ0)e
−θ , (16)

where H(θ) is the Heaviside step function. The decay function IL(θ) is nonzero only
to the left of θ0, whereas the decay function IR(θ) is nonzero only to the right of
θ0. After area normalization, yielding ER(θ) and EL(θ), they can be viewed as a
“truncated exponential” and as a “shifted exponential”, respectively. In this way,

G(u) = fL GL(u) + fRG R(u), (17)
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Fig. 2 Phasor plot for the
exponential function (“universal
semicircle”), including a zoom
of the high frequency part,
viewed as the sum of the phasors
of Eqs. (15) and (16), in this
example with θ0 = ln 2. The
phasor plot of the truncated
exponential decay function,
EL (θ), is the blue curve, and the
phasor plot of the shifted
exponential decay function,
ER(θ), is the red curve (Color
figure online)

S(u) = fL SL(u) + fR SR(u), (18)

where fL and fR = 1 − fL are the relative contributions, with

fL =
θ0∫

0

e−θ dθ = 1−e−θ0 . (19)

The cosine and sine transforms of the truncated exponential are:

GL(u) = eθ0 + u sin (θ0u) − cos (θ0u)
(
eθ0 − 1

) (
1 + u2

) , (20)
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Fig. 3 Phasor plot for the
exponential function (“universal
semicircle”), including a zoom
of the high frequency part,
viewed as the sum of the phasors
of Eqs. (15) and (16), in this
example with θ0 = 0.03
( fL = 0.030). The phasor plot
of the truncated exponential
decay function, EL (θ), is the
blue curve, and the phasor plot
of the shifted exponential decay
function, ER(θ), is the red curve
(Color figure online)

SL(u) = eθ0 u − sin (θ0u) − u cos (θ0u)
(
eθ0 − 1

) (
1 + u2

) , (21)

while those of the shifted exponential are:

G R(u) = cos (θ0u) − u sin (θ0u)

1 + u2 , (22)

SR(u) = u cos (θ0u) + sin (θ0u)

1 + u2 . (23)

It follows from Eqs. (22) and (23) that for large u the phasor plot of the shifted
exponential ER(θ) becomes a hyperbolic spiral [28,29], with radius 1/u and polar
angle (phase) θ0 u, see Fig. 2. This is similar to what was observed for the exponential
of exponential decay function when unimodal [26]. On the other hand, the phasor
path for the truncated exponential, EL(θ), which has a singularity in the derivative at
θ0, is also an inward spiral, albeit distorted, reminiscent of the curves observed for
some super-exponential decays [26]. For small θ0 (Fig. 3) it is similar to the curve
corresponding to a rectangular “decay”/pdf, which is of the cochleoid type [28,29].
As expected, for small θ0 the cf of EL(θ) becomes similar to the universal semicircle,
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Fig. 4 Phasor plot for the
exponential function (“universal
semicircle”), including a zoom
of the high frequency part,
viewed as the sum of the phasors
of Eqs. (15) and (16), in this
example with θ0 = 3
( fL = 0.95). The phasor plot of
the truncated exponential decay
function, EL (θ), is the blue
curve, and the phasor plot of the
shifted exponential decay
function, ER(θ), is the red curve
(Color figure online)

whereas for large θ0 this happens to the cf of ER(θ), which nearly loses the convoluted
character, see Figs. 3 and 4, respectively.

It also follows from Eqs. (20)–(23) that the R and L phasors coincide exactly for
u = 2nπ/θ0 (n = 1, 2, . . .), see e.g. Figs. 6, 8 and 10.

The full circle can be obtained in the same way, if negative frequencies are also
used, Fig. 11.

The shifted exponential curve (red curve) is also directly related to the curve of the
unshifted exponential (universal circle), as Eqs. (22) and (23) can be rewritten in the
form

[
G R(u)

SR(u)

]

=
[

cos (θ0u) − sin (θ0u)

sin (θ0u) cos (θ0u)

] [
1

1+u2
u

1+u2

]

, (24)
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Fig. 5 Phasor plot for the
exponential function (“universal
semicircle”), viewed as the
weighted sum of the phasors of
Eqs. (15) and (16), with
θ0 = ln 2. The phasor plot of the
truncated exponential decay
function, EL (θ), is the blue
curve, and the phasor plot of the
shifted exponential decay
function, ER(θ), is the red
curve. The lever rule
( fL = 1/2) is shown for a
reduced frequency u = π /ln 2
(Color figure online)

Fig. 6 Phasor plot for the
exponential function (“universal
semicircle”), viewed as the sum
of the phasors of Eqs. (15)
and (16), with θ0 = ln 2. The
phasor plot of the truncated
exponential decay function,
EL (θ), is the blue curve, and the
phasor plot of the shifted
exponential decay function,
ER(θ), is the red curve. For the
depicted reduced frequency,
u = 2 π /ln 2, the two curves
meet at the same point (Color
figure online)

Fig. 7 Phasor plot the
exponential function (“universal
semicircle”), viewed as the sum
of the phasors of Eqs. (15)
and (16), with θ0 = ln 2. The
phasor plot of the truncated
exponential decay function,
EL (θ), is the blue curve, and the
phasor plot of the shifted
exponential decay function,
ER(θ), is the red curve. The
lever rule ( fL = 1/2) is shown
for a reduced frequency
u = 3 π /ln 2 (Color figure
online)
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Fig. 8 Phasor plot the
exponential function (“universal
semicircle”), viewed as the sum
of the phasors of Eqs. (15)
and (16), with θ0 = ln 2. The
phasor plot of the truncated
exponential decay function,
EL (θ), is the blue curve, and the
phasor plot of the shifted
exponential decay function,
ER(θ), is the red curve. For the
depicted reduced frequency,
u = 4 π /ln 2, the two curves
meet at the same point (as in
Fig. 5) (Color figure online)

Fig. 9 Phasor plot the
exponential function (“universal
semicircle”), viewed as the sum
of the phasors of Eqs. (15)
and (16), with θ0 = ln 2. The
phasor plot of the truncated
exponential decay function,
EL (θ), is the blue curve, and the
phasor plot of the shifted
exponential decay function,
ER(θ), is the red curve. The
lever rule ( fL = 1/2) is shown
for a reduced frequency
u = 5 π /ln 2 (Color figure
online)

which corresponds to a rotation of the original vector by an angle θ0u, as can be seen
in Figs. 5, 6, 7, 8, 9 and 10 (where the effective rotation is either π or 2π ). This result
is a special case of the shift property of causal functions (functions f (t) such that
f (t) = 0 if t < 0 [3]), which is demonstrated in the Appendix.

The decomposition of the exponential decay function can also be made with three
or more functions, overlapping or not in time.

3 Conclusions

With the area normalization expressed by Eq. (1), the luminescence decay functions
E(t) form a subset in the universe of all one-sided probability density functions,
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Fig. 10 Phasor plot the
exponential function (“universal
semicircle”), viewed as the sum
of the phasors of Eqs. (15)
and (16), with θ0 = ln 2. The
phasor plot of the truncated
exponential decay function,
EL (θ), is the blue curve, and the
phasor plot of the shifted
exponential decay function,
ER(θ), is the red curve. For the
depicted reduced frequency,
u = 6 π /ln 2, the two curves
meet at the same point (as in
Figs. 5, 7) (Color figure online)

Fig. 11 Reconstruction of the full circle, viewed as the sum of the phasors of Eqs. (15) and (16), with
θ0 = ln 2. Both positive and negative frequencies are used. The phasor plot of the truncated exponential
decay function, EL (θ), is the blue curve, and the phasor plot of the shifted exponential decay function,
ER(θ), is the red curve. Both curves start (u = −∞) and end (u = +∞) at the origin, and evolve
counterclockwise as the frequency increases (Color figure online)
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the same being valid for the phasor plots, which are parametric plots of the respec-
tive characteristic functions. Decomposition of the exponential decay function in two
non-overlapping functions (truncated exponential and shifted exponential) allowed
retrieving phasor plots similar to those previously obtained for super-exponential and
unimodal functions.

Acknowledgments This work was carried out within Projects PTDC/QUI-QUI/123162/2010 and
RECI/CTM-POL/0342/2012 (FCT, Portugal).

Appendix: Shift property of causal functions

If a given causal function f (t) is shifted to the right by 	t , it becomes another causal
function g(t) = f (t − 	t). The Fourier cosine transform of g(t) is, successively,

G[g] =
∞∫

0

cos(ωt)g(t)dt =
∞∫

0

cos(ωt) f (t − 	t)dt =
∞∫

0

cos(ωt ′+ω	t) f (t ′)dt ′,

(25)

hence

G[g] = cos(ω	t)G[ f ] − sin(ω	t)S[ f ]. (26)

Similarly, it is obtained that

S[g] = sin(ω	t)G[ f ] + cos(ω	t)S[ f ], (27)

and therefore

[
G[g]
S[g]

]

=
[

cos (ω	t) − sin (ω	t)
sin (ω	t) cos (ω	t)

] [
G[ f ]
S[ f ]

]

(28)

A time shift 	t is tantamount to a counter-clockwise rotation by ω	t in the phasor
space.

References

1. B. Valeur, M.N. Berberan-Santos, Molecular Fluorescence. Principles and Applications, 2nd edn.
(Wiley-VCH, Weinheim, 2012)

2. M.N. Berberan-Santos, B. Valeur, J. Lumin. 126, 263 (2007)
3. A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, New York, 1962)
4. D.M. Jameson, Introduction to Fluorescence (CRC Press, Boca Raton, 2014)
5. G. Weber, J. Phys. Chem. 85, 949 (1981)
6. W. Feller, An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. (Wiley, New

York, 1971)
7. D.M. Jameson, E. Gratton, R.D. Hall, Appl. Spectrosc. Rev. 20, 55 (1984)
8. M. Berberan-Santos, J. Lumin. 50, 83 (1991)

123



J Math Chem (2015) 53:1207–1219 1219

9. M. Itagaki, K. Watanabe, Bunseki Kagaku 43, 1143 (1994)
10. M. Itagaki, M. Hosono, K. Watanabe, Anal. Sci. 13, 991 (1997)
11. P.J. Verveer, P.I.H. Bastiaens, J. Microsc. 209, 1 (2003)
12. A.H.A. Clayton, Q.S. Hanley, P.J. Verveer, J. Microsc. 213, 1 (2004)
13. G.I. Redford, R.M. Clegg, J. Fluoresc. 15, 805 (2005)
14. M.A. Digman, V.R. Caiolfa, M. Zamai, E. Gratton, Biophys. J. 94, L14 (2008)
15. A.H.A. Clayton, J. Microsc. 232, 306 (2008)
16. Y.-C. Chen, R.M. Clegg, Photosynth. Res. 102, 143 (2009)
17. Y.-C. Chen, B.Q. Spring, C. Buranachai, G. Malachowski, R.M. Clegg, Proc. SPIE 7183, 718302

(2009)
18. C. Stringari, A. Cinquin, O. Cinquin, M.A. Digman, P.J. Donovan, E. Gratton, Proc. Natl. Acad. Sci.

USA 108, 13582 (2011)
19. M. Stefl, N.G. James, J.A. Ross, D.M. Jameson, Anal. Biochem. 410, 62 (2011)
20. N.G. James, J.A. Ross, M. Stefl, D.M. Jameson, Anal. Biochem. 410, 70 (2011)
21. E. Hinde, M.A. Digman, C. Welch, K.M. Hahn, E. Gratton, Microsc. Res. Tech. 75, 271 (2012)
22. M.A. Digman, E. Gratton, in Fluorescence Lifetime Spectroscopy and Imaging: Principles and Appli-

cations in Biomedical Diagnostics (L. Marcu, P.M.W. French, and D.S. Elson eds., CRC Press, Boca
Raton, 2012)

23. F. Menezes, A. Fedorov, C. Baleizao, B. Valeur, M.N. Berberan-Santos, Methods Appl. Fluoresc. 1,
015002 (2013)

24. E. Hinde, M.A. Digman, K.M. Hahn, E. Gratton, Proc. Natl. Acad. Sci. USA 110, 135 (2013)
25. Y. Engelborghs, A.J.W.G. Visser (eds.), Fluorescence Spectroscopy and Microscopy (Humana Press,

New York, 2014)
26. M.N. Berberan-Santos, Chem. Phys. 449, 23 (2015)
27. A. Stuart, K. Ord, Kendall’s Advanced Theory of Statistics, vol. 1, 6th edn. (Hodder Arnold, London,

1994)
28. F.G. Teixeira, Traité des Courbes Spéciales Remarquables Planes et Gauches, Tome II (Coimbra

University Press, Coimbra, 1908)
29. J.D. Lawrence, A Catalogue of Special Plane Curves (Dover, Mineola, 1972)

123


	Probabilistic view of the luminescence phasor plot and description of the universal semicircle as the sum of two spiraling curves
	Abstract
	1 Introduction
	2 Results and discussion
	2.1 Probabilistic aspects
	2.2 Universal semicircle as the sum of two spiraling curves

	3 Conclusions
	Acknowledgments
	Appendix: Shift property of causal functions
	References


